a2 United States Patent

US009473598B2

10) Patent No.: US 9,473,598 B2

Kashyap 45) Date of Patent: Oct. 18, 2016
(54) NETWORK CONNECTION FAILOVER 5,828,569 A * 10/1998 Fishercccovcvrcvirinirnce 700/82
DURING APPLICATION SERVICE 6,006,259 A 12/1999 Adelman et al.
INTERRUPTION 6,021,507 A : 2;2000 Chenﬂ.l. 1 7/14/2
6,360,262 Bl 3/2002 Guenthner et al. 709/226
(75) Inventor: Vivek Kashyap, Beaverton, OR (US) o Bl o001 ek Ho4L 12/24
370/393
(73) Assignee: International Business Machines 6,711,621 B1* 3/2004 Mitra .oooovvrvevreerenne, HO41. 69/16
Corporation, Armonk, NY (US) 370/401
6,853,617 B2* 2/2005 Watson et al. 370/218
(*) Notice: Subject to any disclaimer, the term of this 6,871,296 B2 3/2005 Kashyap
patent is extended or adjusted under 35 6,880,013 B2 4/2005 Kashyap
U.S.C. 154(b) by 1121 days. (Continued)
(21) Appl. No.: 11/958,428 FOREIGN PATENT DOCUMENTS
(22) Filed: Dec. 18, 2007 WO W02006010812 2/2006
(65) Prior Publication Data OTHER PUBLICATIONS
US 2009/0157882 Al Jun. 18, 2009) o
untz et al., 1gratable ocKet 1n LinuXx, reb. N
Kuntz et al., MIGSOCK Migratable TCP Socket in L Feb. 21
(51) Imt.CL 2002, 27 pages.
GO6F 15/16 (2006.01) (Continued)
HO4L 29/06 (2006.01)
HO4L 29/08 (2006.01) . . .
HO4L 29/14 (2006.01) Prlr.nary Examn?er — Krista Zele .
ssistant Examiner — ony Fabbri
(52) US.CL Assistant F. Anthony Fabb
CPC ... HO4L 69/16 (2013.01); HO4L 67/1002 (74) Attorney, Agent, or Firm — Walter W. Duft
(2013.01); HO4L 67/1034 (2013.01); HO4L
67/14 (2013.01); HO4L 69/162 (2013.01); (57) ABSTRACT
HO4L 697163 (2013.01); HO4L 69/40 A system, method and computer program product for imple-
(2013.01); GO6F" 15716 (2013.01) menting network connection failover during application
(58) Field of Classification Search service interruption. While the application is quiesced, a
CPC ... GO6F 15/16; HO4L 67/1034; HO4L 67/14; network socket that terminates a network connection to a
HOA4L 67/1002; HO4L 69/16; HOAL 69/40; network peer is maintained on behalf of the application. The
HO4L 69/162; HOAL 69/163 socket’s network connection state information is sustained
USPC s 709/227, 224., 220, 237 by providing acknowledgements of incoming network traffic
See application file for complete search history. to the network peer that prevent the peer from terminating
the connection. on restart, the application 1s brought u
. h ion. Up he application is brought up
(56) References Cited with a blocked socket. The state of the blocked socket is

U.S. PATENT DOCUMENTS

5,727,142 A * 3/1998 Chen 714/2
5,802,258 A * 9/1998 Chen

714/10

conformed to a current network connection state of the
original socket and the blocked socket is unblocked.

25 Claims, 13 Drawing Sheets

SOURCE MACHINE
{24}

VAE
22

“APPLICATION
20

PEER
ey

US 9,473,598 B2

Page 2
(56) References Cited 2005/0251785 Al 11/2005 Vertes et al.
2005/0262411 A1* 11/2005 Vertes et al. GOG6F 11/203
U.S. PATENT DOCUMENTS 714/741
2006/0034290 Al* 2/2006 Kalofonos et al. 370/395.2
6,920,501 B2* 7/2005 Chu et al. .coocoecvererenenn. 709/228 2006/0075119 Al1* 4/2006 Hussain et al. 709/227
6,934,875 B2* 8/2005 Kashyapcccccccoeo... 714/4 2006/0168334 Al* 7/2006 Pottietal. ... 709/239
6.938.092 B2 /2005 Burns 2006/0280175 Al* 12/2006 Kanakasapapathi HOA4L 12/4633
6,938,179 B2* 8/2005 Iyeretal. ... 714/4.4
6,973,517 B1* 12/2005 Golden et al. GOG6F 15/16 370/389
710/104 2006/0294317 Al* 12/2006 Berkecccoo..... GO6F 15/16
7,016,973 Bl 3/2006 Sibal et al. 711/141
7,039,718 B2 5/2006 Vertes 2007/0005827 Al* 1/2007 Sarangam HO04L 67/1002
7,076,555 Bl 7/2006 Orman et al. 710/46
7.275.106 B1* 9/2007 Bean et al 709/227 2007/0097979 AL* 52007 V. oo GO6F 15/16
680, - b e 370/392
7,689,702 BL* 3/2010 Tripathi G06F3%5/g§; 2009/0064207 AL* 3/2009 Sigal w.oovvrorvererorrcrcronen 719/330
8,484,370 B1* 7/2013 Coffee et al. 709/232
8,549,345 B1* 10/2013 Tripathi HO4L 69/16 OTHER PUBLICATIONS
714/4.1
2001/0056505 Al* 12/2001 Alibakhsh HO041 67/42 Almesberger, TCP Connection Passing, OLS 2004, 2004, pp. 9-22.
719/310
2005/0149529 Al* 7/2005 Gutmans 707/10 * cited by examiner

U.S. Patent Oct. 18, 2016 Sheet 1 of 13 US 9,473,598 B2

2 \\
VIRTUAL VIRTUAL VIRTUAL VIRTUAL
APPLICATION APPLICATION APPLICATION APPLICATION

ENVIRONMENT, | ENVIRONMENT ENVIRONMENT ENVIRONMENT
(8, (8) (8;) (84)

APPLICATION APPLICATION APPLICATION APPLICATION
(10,) (10,) (10,) (10,)

OPERATING SYSTEM
(6)

HARDWARE
4)

FIG.]

U.S. Patent Oct. 18, 2016 Sheet 2 of 13 US 9,473,598 B2

2 \\

VIRTUAL VIRTUAL VIRTUAL VIRTUAL
APPLICATION APPLICATION APPLICATION APPLICATION
ENVIRONMENT ENVIRONMENT ENVIRONMENT ENVIRONMENT

(8,) (8,) (8,) (84)
APPLICATION APPLICATION APPLICATION APPLICATION
(10) (10,) (10) (10,)

OPERATING SYSTEM
(6)

HARDWARE
4)

MIGRATION
MANAGEMENT
LOGIC

(12)

A 4 - 2A
VIRTUAL f

APPLICATION
ENVIRONMENT]

(84)

APPLICATION
(10,)

OPERATING SYSTEM
(6A)

HARDWARE
(4A)

FIG. 2

U.S. Patent Oct. 18, 2016 Sheet 3 of 13 US 9,473,598 B2

SOURCE MACHINE
(24)

‘(’2’2‘)5 SOURCE
CONNECTION
APPLICATION MANAGER
(20) (34)

TRANSFER

SOURCE
SOCKET
(30)

SOURCE NETWORK STACK
(24A)

| INTERFACE |
(24B)

MIGRATION
MANAGEMENT
LOGIC

(28)

CONNECTION
STATE

(38)

PEER
(21)

TARGET MACHINE
(26)
h 4 4

‘(’2“5 TARGET
CONNECTION
APPLICATION MANAGER
(20) (36)

|

UPDATE

v

TARGET SET
SOCKET
(32)

TARGET NETWORK STACK
(26A)

h 4
I INTERFACE
(26B)

FIG. 3

US 9,473,598 B2

Sheet 4 of 13

Oct. 18, 2016

(o) (z€)
4 13¥00S —
NO %2018 134008 W .mv N RN
— 3aowzd —P LIOWUVL
{09) INIHOVIN LIDHVL _
01 SSIHAAV dI AQY
< (85) YIOVYNYIN NOILOINNOD 1I9OUVL OL ¥IASNVUL FLVLS FLVHILIIN
(ve) (z¢) HU (95) INIHOVIN 308N0S

» vs) | (2€ WOX4 $S3UAAY di IAOWIY

e~ Lawoos
— ESTELN
% (zS) HIDVYNVIN NOILDINNOD 1398V OL JLVLS NOILDANNGD 3LVHOIN

(06) ALVUDIN O1 INILINI 40 ¥IDVNVIN NOILIANNOD 30HNOS WHOANI

i {(8¢) YIOVNVIN NOILDINNOD 13D¥VL OL 3LVIS
NOLLOZNNOD 40 NOILYYOIN 3LVILINI

(9¥) 13008
3078 HLIM
NOILYOI1ddV
LMV1STY
(og) (F¥) LIHO0S
13IMD0S U3A0 IHVL
20¥N0Ss

(Z¢) LINDO0S IDUNOS 40 YIISNVHL ILVILING ——P

(0%} LNIOdMO3AHD _
LVILINI

U.S. Patent

(9€) YIOVYNVIN NOILDINNOD (82) 21901 (v€) HIDVYNVIN NOILDINNOD
139¥vL ANIWIDVYNVIN NOILYHDIN I0MN0OS

US 9,473,598 B2

Sheet 5 of 13

Oct. 18, 2016

U.S. Patent

(avz) 3OV4HILNI ¥HOMLIN

U

(ave)
SUIAVTIMOVLS
13A317 ¥3IMOT

03903 TMONMIOVNN

(e-av2)

V1iva LINSNVHL i
(1-ov2) -

OdNI

3ivis

(z-ove)

ERVERED]

(o%2) ¥3AV
14OdSNVHL

(vve)

MNOVLS MHOMLIN 30A4N0S

§ OIA

(ave)
| NOILVOIN
ETR4E

L3208 NOILOINNOD
HONOYHL a3AIZ0IY

NOILVINHOANI 31VIS

(vve)
HO1di¥oS3a JiV1S dOL

134908 NIVLEO B

| H01d4I¥083A

LIMO0S

JAIZO 3

(82)
21901
INTWIOVYNVYIN
NOILVHOIN

2

(og)
13¥00s
324NOS

(¥e)
HIOVNVIN
.HH NOILOANNOD

324N0S

(02)
NOILYDI1ddV

(¥2) ANIHOVIN 324NOS

US 9,473,598 B2

Sheet 6 of 13

Oct. 18, 2016

U.S. Patent

(992) FOVAYILNI ¥HOMLIN

{1

(a9z)
SHIAVINOVIS
73A3 T ¥IMOT

(¢-092)
V1iva LINSNVYL

gIoazTMONMOVNN| | (1-092)
O4NI

FLVIS
(z-092)

A0

(092) ¥3AV1
1HOdSNVYHL

(v9z)
MOVLS MHOMLIN IO3NOS

(92) INIHOVIN L39¥V1

(a3®D01anNn
N3HL
aaxnoso1g)

(zg)
13IMD08
1393vV1L

U

(02)
NOILYOI1ddVY

(g9¢g)
13M00$
139yvL

dnias

(v9g)

™A NOILVHOIW

ENR-AR
NOLLOINNCD

(9¢)
YIOVNVYI
NOILO3NNOD
139dvl

9 DIA

(82)
319071
ININWIOVNVA
NOILVHOIN

U.S. Patent Oct. 18, 2016 Sheet 7 of 13 US 9,473,598 B2

SOURCE MACHINE
(24)
VAE
(22)
APPLICATION
(20)
TRANSFER
SOURCE
SOCKET
(30)
SOURCE NETWORK STACK
(24A)
] INTERFACE |
(24B)
|
MIGRATION
MANAGEMENT
LOGIC
(28)
PEER
(21)
TARGET MACHINE
(26)
A 4 A
V;ZE TARGET
(22) CONNECTION
APPLICATION MANAGER
(20) (36")
l
UPDATE
TARGET SET
SOCKET
(32)
TARGET NETWORK STACK
(26A)
{ INTERFACE
(26B)
|

FIG. 7

US 9,473,598 B2

Sheet 8 of 13

Oct. 18, 2016

& OIA

(z8)
- 13MN00s — LIMD0S

NO ¥20718
[3AOW3Y P 139uvi

(08) ANIHOVIN 139UV _
Ol $83uAAvY di aav

(82) (zg)
 1ios T 3y00s
A SFET Y
(92) 133908
QaIN0018 HLIM _IIIV
NOILVOddY |
2T N e —
— (pavis —| (2€)
134908 13aMo0s

I ¥3A0 VLI __i30MN0S

U.S. Patent

< (ZZ) LI®O0S IOUNOS 40 YIISNVHL LVILING
(0L) LNIOdMI3HD "
LViLINI
(.9€)} YAOVNVYIN NOILDINNOD (82) 219071
1394VlL LNFWIOVNVIN NOILVHDIN

U.S. Patent Oct. 18, 2016 Sheet 9 of 13 US 9,473,598 B2

SOURCE MACHINE
(24)

VAE
(22)

APPLICATION
(20)

TRANSFER

SOURCE
SOCKET
(30

SOURCE NETWORK STACK
(24A)

I INTERFACE
(24B)

SOURCE CONNECTION
MANAGER (34)

MIGRATION
MANAGEMENT
LOGIC

(28)

PEER
(21)

TARGET MACHINE
(26)
\ A

VAE TARGET
(22) CONNECTION

APPLICATION MANAGER
(20) (36)

I

UPDATE

v

TARGET SET
SOCKET
(32)

TARGET NETWORK STACK
(26A)

{ INTERFACE
(26B)

FIG. 9

U.S. Patent

Oct. 18, 2016

90—

\

Sheet 10 of 13

VIRTUAL APPLICATION
ENVIRONMENT
(VIRTUAL MACHINE)
(98,)

APPLICATION
(100,)

OPERATING SYSTEM
(96,)

VIRTUAL APPLICATION
ENVIRONMENT
(VIRTUAL MACHINE)
(98;)

APPLICATION
(100,)

OPERATING SYSTEM
(96,)

VMM
(94)

HARDWARE
(92)

MIGRATION
MANAGEMENT

LOGIC
(100)

TO TARGET MACHINE

FIG. 10

US 9,473,598 B2

U.S. Patent

FIG. 11

Oct. 18, 2016

Sheet 11 of 13

US 9,473,598 B2

PEER

SOURCE MACHINE
(124)
VAE SOURCE SOURCE
(122) CONNECTION CONNECTION
MANAGER [T| MANAGER
APP PART | PART i
(120) (134A) (134B)
TRANSFER
>
SOURCE
soweee ||| Socker
1300) COPY
(130B)
SOURCE SOURCE
STACK STACK
(124A) (124A)
] INTERFACE
(1248)
|
MIGRATION
CONNECTION
MANAGEMENT STATE
LOGIC
(128) (138)
TARGET MACHINE
(126)
h 4
VAE TARGI!T
(122) CONNECTION
APPLICATION MANAGER
(120) ‘ (136)
UPDATE
TARGET
SOCKET
(132) SET
TARGET NETWORK STACK
(126A)
A
INTERFACE
(126B)

|

(121)

US 9,473,598 B2

Sheet 12 of 13

Oct. 18, 2016

U.S. Patent

(¥G1)
4 133508
A1vadn

(zo1) {zs1)
€~ 1IMD0S — 13IND0S
NO M0078 13948VL

F— 3Aonzd P

(091) INIHOVYW 13DuVL -
0l sS3daav di aay

— (851) YIOVNVIN NOILOINNOD LIDUVL OL HAASNVHL JL1VIS JLvHILITY

| (8PL} YIOVNVIN NOLLOINNOD L3DUVL OL FLVLS

(zg1)
13Mo0s
139¥vL

———— (25)) HIDOVNVIN NOILOINNOD LIDHVL OL ALVLS NOILOINNOD ILVHOIN

_

(0S1) ALVHOIN OL LNILN! 40 ¥IOVNVIN NOILOANNOD 328N0S WHOINI ———————————— Pt

NOILJD3NNOD 40 NOILVHOIN 31VILINI

il I
asxo018 Hiim '

H_ WOYd SS3YAQV di IAONTY

¢l °DIA

(951) INIHIVIN 3DHNOS

(3¥F1) AdOD LIND08

¢ w 30UNOS LUVLS

NOLLYOI1ddV
Lavis3y
(goct)
AdO3
13%008
30¥N0S

(@yvL) 13%008 H
— (orrL) P anNadsns
134008

€ Fivordna — (avri)
g V1iVQ L3008 GN3S

{or1) LNIOdXDTIHD
ILVILINI

(vrvi)
twogy) [viva |
13M008 13%008
30UN0S |4 L03TI00 —

(z#1) LIYD0S IOUNOS 40 HIISNVHL JLIVILINI ——P

(9g1) ¥IOVNYI
NOILOZINNQD 13D¥VL

(8Z1) 21901

1ININIOVNVIN NOLLVUDIN

(arel) it Luvd YIDOVNYI
NOILOZNNOD 30UN0S

(VPEi) 1 14Vd HIDYNYI
NOILOINNOS FOUNOS

U.S. Patent Oct. 18, 2016 Sheet 13 of 13 US 9,473,598 B2

210 212
% (
cPU
216 | | 214
(s s C
GRAPHICS | MEMORY | MAIN
| HUB |
218 |
(: + | PERIPHERAL |
| o :
Sggsll(\:CEsE | CONTROLLER [—H——{ PERIPHERAL | | 220
g HUB H——{ PERIPHERAL |
N 222

=

FIG. 14

US 9,473,598 B2

1
NETWORK CONNECTION FAILOVER
DURING APPLICATION SERVICE
INTERRUPTION

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the management of con-
nections between end points in a network. More particularly,
the invention is directed to maintaining a network connec-
tion when one network end point experiences a planned
service interruption, such as during transfer of an application
that implements the end point from one network system to
another as part of a software migration operation.

2. Description of the Prior Art

By way of background, it is sometimes necessary to
temporarily disable a software application while the appli-
cation is engaged in network communication at one endpoint
of a network connection. By way of example, such an
interruption could occur when the application is migrated
from one network system to another for load balancing or
other reasons. During the period of interruption, it may be
desirable to maintain the application’s network connection
even though the application is unable to process network
data. This would be the case, for example, if the application
was involved in a complex transaction with a network peer
and the transaction state would be lost if the network
connection was terminated.

Techniques have been proposed whereby a live TCP
(Transmission Control Protocol) or UDP (User Datagram
Protocol) connection can be passed from one machine to
another without connection loss. Such techniques have
included solutions such as (1) offloading the application’s
network protocol processing to a front end communication
entity, (2) having a takeover node continuously snoop the
connection and thereby mirror the application’s network
protocol processing, (3) isolating the network connection so
that no packets are received or sent, (4) placing the network
peer in a persist mode and having a remote home agent
assume responsibility for the connection, or (5) modifying
the TCP protocol at both network connection endpoints to
support temporary connection inactivity. The first two solu-
tions have the disadvantage of requiring duplicative pro-
cessing resources to monitor the network connection. The
third solution runs the risk that the network peer will drop
the connection if the interruption takes longer than the peer’s
view of retransmission time and the number of transmissions
that are allowed before the connection is terminated. The
fourth solution requires a separate machine to assume con-
nection responsibility. The fifth solution requires modifica-
tion to the network stacks of both endpoints.

It would be desirable to provide an alternative technique
whereby an application’s network connection can be main-
tained during a temporary cessation of application process-
ing activity. What is particularly needed is a solution that
accomplishes the foregoing without the attendant disadvan-
tages noted above.

SUMMARY OF THE INVENTION

The foregoing problems are solved and an advance in the
art is obtained by a system, method and computer program
product for implementing network connection failover dur-
ing application service interruption. While the application is
quiesced, a network socket that terminates a network con-
nection to a network peer is maintained on behalf of the
application. The network connection is sustained by provid-

w

10

15

20

25

30

35

40

45

50

55

60

65

2

ing acknowledgements of incoming network traffic to the
network peer that prevent the peer from terminating the
connection. Upon restart, the application is brought up with
a blocked socket. The state of the blocked socket is con-
formed to a current network connection state of the original
socket and the socket is unblocked.

According to exemplary disclosed embodiments, the
application may be disposed in a virtual application envi-
ronment and the service interruption may be due to the
application being quiesced as part of an application migra-
tion operation wherein the virtual application environment is
migrated from a source machine to a target machine. In this
environment, the source socket may be maintained by a
connection manager that resides on the target machine.
Alternatively, there could be two connection managers. One
connection manager could be a source connection manager
residing on the source machine, or an intermediary machine.
The other connection manager could be a target network
connection manager on the target machine. The target con-
nection manager may be used to conform the state of the
blocked socket to the current network connection state of the
original socket that is maintained by the source connection
manager, and unblock the blocked socket. The virtual appli-
cation may or may not include an operating system that
contains the network socket. If it does, the source connection
manager may be distributed between a first source connec-
tion manager part residing in the virtual application envi-
ronment on the source machine and a second source con-
nection manager part residing outside the virtual application
environment, and further wherein the target connection
manager resides in the virtual application environment on
the target machine. During the period that the application is
out of service, the network connection may be sustained by
the transport layer of the network protocol stack associated
with the original socket maintained by the source connection
manager. The network connection may be sustained in part
by reducing a window size associated with the connection
manager socket in accordance with data received from the
network peer. Eventually, the network peer may enter a
“persist” state. This state (along with other transport layer
states) can be easily sustained by acknowledging future
packets sent by the peer. The network connection state
information used to conform the blocked socket may include
one or more of 4-tuple source and destination addresses, port
numbers, TCP flags, Selective ACKnowledgement (SACK)
options data, an Initial Send Sequence number (ISS), current
sequence and acknowledgement numbers, a current state of
a receive buffer and transmitted but unacknowledged data.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features and advantages of the
invention will be apparent from the following more particu-
lar description of preferred embodiments of the invention, as
illustrated in the accompanying Drawings, in which:

FIG. 1 is a functional block diagram showing a data
processing system supporting virtual application environ-
ments;

FIG. 2 is a functional block diagram showing the migra-
tion of a virtual application environment from the data
processing system of FIG. 1 to a different data processing
system,

FIG. 3 is a functional block diagram showing exemplary
components for implementing improved network connec-
tion failover during application service interruption;

US 9,473,598 B2

3

FIG. 4 is a flow diagram illustrating exemplary operations
that may be performed to implement network connection
failover using the components of FIG. 3;

FIG. 5 is a detailed functional block diagram of an
exemplary source machine engaged in network connection
failover;

FIG. 6 is a detailed functional block diagram of an
exemplary source machine engaged in network connection
failover;

FIG. 7 is a functional block diagram showing exemplary
alternative components for implementing improved network
connection failover during application service interruption;

FIG. 8 is a flow diagram illustrating exemplary operations
that may be performed to implement network connection
failover using the components of FIG. 7;

FIG. 9 is a functional block diagram showing exemplary
further alternative components for implementing improved
network connection failover during application service inter-
ruption;

FIG. 10 is a functional block diagram showing an alter-
native data processing system supporting virtual application
environments;

FIG. 11 is a functional block diagram showing exemplary
further alternative components for implementing improved
network connection failover during application service inter-
ruption;

FIG. 12 is a flow diagram illustrating exemplary opera-
tions that may be performed to implement network connec-
tion failover using the components of FIG. 11;

FIG. 13 is a block diagram illustrating an exemplary
hardware environment in which the data processing system
of FIGS. 1 and 10 may be implemented; and

FIG. 14 is a diagrammatic illustration showing physical
media that may be used to provide a computer program
product for implementing improved network connection
failover in accordance with the disclosure herein.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The invention will now be described by way of exemplary
embodiments shown by the drawing figures, in which like
reference numerals indicate like elements in all of the
several views.

Turning to FIG. 1, a data processing system 2 that may be
used to implement network connection failover in accor-
dance with the present disclosure includes a hardware plat-
form 4 and an operating system 6 that manage resources
provided by the hardware platform on behalf of one or more
application programs (applications). The operating system 6
is assumed for purposes of illustration only, and not by way
of limitation, to provide virtual application environments 8,
8,, 8, and 8, that in turn support respective applications 10,
10,, 10, and 10,,. Each application 10,, 10,, 10, and 10, may
comprise one or more application processes, threads or other
execution contexts. As will be seen below in connection with
FIG. 8, operating systems that do not support virtual appli-
cation environments may also be used to implement network
connection failover in accordance with the present disclo-
sure.

The hardware platform 4 may be implemented using any
known data processing equipment that is capable of sup-
porting execution of the operating system 6, including the
exemplary data processing hardware described below in
connection with FIG. 9. The operating system 6 may be
implemented using any conventional operating system soft-
ware capable of optionally supporting the virtual application

10

15

20

25

30

35

40

45

50

55

60

65

4

environments 8,, 8,, 8; and 8,, with appropriate modifica-
tions being made thereto to provide network connection
failover as disclosed herein. This type of virtualization is
known as operating system-level virtualization. In operating
system-level virtualization, virtual application environments
are sometimes referred to as “containers.” As will be seen in
the discussion of FIG. 8 below, an alternative form of
virtualization may also be used in which multiple operating
systems (which do not require support for application con-
tainers) run on a virtual machine monitor or “hypervisor.”

Examples of operating systems that have application
container support capability include the IBM® AIX® 6
operating system with WPAR (Workload PARtition) sup-
port, IBM® Meiosys virtualization products, and Linux®
operating system kernels built in accordance with the
OpenVZ project, the VServer project, or the Free VPS
project. These operating systems have the ability to selec-
tively allocate physical and logical resources to their con-
tainers (virtual application environments). Such resource
allocations may include CPU time, memory, /O (Input/
Output) ports, network devices, disk partitions, etc. Depend-
ing on the particular virtualization implementation being
used, each virtual application environment may have its own
process tree, file system directory tree, users and groups,
system libraries, network addresses, disk space, etc. Thus,
residing within the container are all of the application’s core
executable and binary code files, representing everything
needed by the application to operate. Only nonessentials,
such as configuration settings and user data, are maintained
outside the container. The system resources, file system and
networking are virtualized. To the applications within the
containers, and to users of the applications, each container
appears like an independent operating system instance i.e. as
a virtual machine. The applications and users within a
container cannot “see” outside the container. Typically there
is also a container used by a privileged “root” user that can
view the contents of all the other containers. This is some-
times referred to as the “global” container or context. Note
that the reference to the above-named technologies is not
intended to suggest that the network connection failover
techniques disclosed herein are limited to particular product
offerings.

With respect to the applications 10, 10,, 105 and 10,, it
should be understood that the term “application” as used
herein refers to the performance of a particular function and
rather than to signify separate software that is distinct from
an operating system. Although an application will in many
cases be a distinct software program, in other cases an
application may consist of little or no code that could be
considered separate from the operating system itself. For
example, if one of the virtual application environments 8,
8,, 8, and 8, is configured as a firewall appliance, almost all
of the processing will take place in kernel mode.

The system 2 provides an environment in which each of
the applications 10,, 10,, 105 and 10, and their workloads
can be readily transferred from one point of use to another.
This is particularly advantageous for server systems wherein
workloads need to be balanced between multiple servers.
The virtual application environments 8,, 8,, 8; and 8, make
this possible by acting as mediators between the applications
10,,10,, 105 and 10, and the underlying operating system 6.
Whereas it is not normally possible to transfer a live
application without losing its state, this can be done in an
operating system-level virtualization environment by
migrating the virtual application environments 8,, 8,, 8, and
8, that “contain” the applications 10,, 10,, 105 and 10,,. This
type of migration involves a conventional technique known

US 9,473,598 B2

5

as “checkpointing” and is handled by conventional migra-
tion management logic. As is well known to persons skilled
in the art, checkpointing entails capturing an application’s
running state and memory footprint and saving it to disk so
that it can be recovered later using an operation known as a
“restart.” Application migration entails checkpointing an
application on a source system and restarting the application
on a target system. Virtual application environments facili-
tate the migration process by eliminating application depen-
dencies in such areas as mail settings, network addresses,
libraries, and the like, such that the “containerized” appli-
cations are not aware that they are being hosted by a
different system.

FIG. 2 illustrates one example of virtual application
environment migration in which the migration is between
separate hardware platforms. In particular, the virtual appli-
cation environment 8, has been transferred from the data
processing system 2 (representing a source machine) to a
different data processing system 2A (representing a target
machine) comprising a hardware platform 4A running an
operating system 6A. The migration management logic that
implements the migration can be implemented in a variety of
ways. For example, it could reside in an operating system as
akernel module, or in the user space associated with a global
container, or as a combination of kernel and user space
functionality. The migration management logic could reside
on the source data processing system 2, on the target data
processing system 2A, on both systems as distributed logic,
or even on a third data processing system (not shown).
Furthermore, one portion of the migration management
logic might just checkpoint an application and a different
entity (user space or kernel) representing another portion of
the migration management logic might restart the applica-
tion from the checkpointed state file. In FIG. 2, the migration
management logic is illustrated by reference numeral 12. It
is to be understood that this logic could be illustrated in any
of'the various ways described above, or in any other way that
allows application migration to be successfully imple-
mented.

Unfortunately, using conventional virtual application
environment migration techniques to perform the foregoing
migration raises the problem of network connection failover
discussed by way of background above. As such, a mecha-
nism is needed to prevent network connections from being
dropped during the period in which an application within a
migrating virtual application environment is not able to
process network communications because the application is
temporarily out of service. The problem is that the remote
network peer may reset the connection if the failover takes
too much time. This could be the case if the remote system
has short “keepalive” or retransmission timeouts. This issue
may be exacerbated if the application restart on target
machine takes time. Such delay could be due to a need to
suspend the workload on the target, the handling of operat-
ing system upgrades or more important jobs, or a large
number of connections having to be resurrected as part of the
transfer.

This problem can be solved by a “connection manager,”
described in more detail below, that acts as a temporary
intermediary between the migrating application and a net-
work peer that is communicating with the application via a
network connection. During application migration, the con-
nection manager keeps the network connection alive by
assuming control of the network socket owned by the
application and representing the application’s network con-
nection endpoint, thereby keeping the socket alive and
allowing the transport protocol (e.g., TCP) layer of the

10

15

20

25

30

35

40

45

50

55

60

65

6

underlying network stack to continue to manage the network
connection. In a connection oriented windowing protocol
such as TCP, incoming data is accepted (and buffered) while
the transport layer simultaneously closes the window as per
the data. Eventually (in the case of TCP), the remote client
may enter a ‘persist’ state. This state (along with other TCP
states) is easily sustained by virtue of the transport layer
logic acknowledging future packets sent by the network
peer.

FIG. 3 is illustrative of one exemplary implementation of
network connection failover in which an application 20
(e.g., any of the applications 10,, 10,, 105 and 10, of FIG.
1) engaged in network communication with a remote net-
work peer 21 becomes temporarily unavailable as a result of
migration from one data processing system to another. By
way of example only, the application 20 is assumed to be
contained within a virtual application environment (VAE) 22
(e.g., any of the virtual application environments 8,, 8,, 8;
and 8, of FIG. 1) that is undergoing migration from a source
machine 24 (e.g., the data processing system 2 of FIG. 1) to
a target machine 26 (e.g., the data processing system 2A of
FIG. 2). The migration may be handled by migration man-
agement logic 28 (e.g., the migration management logic 12
of FIG. 2) implemented in any of various ways described
above, and which is additionally adapted to support network
connection failover as disclosed herein.

On the source machine 24, the application 20 communi-
cates with the peer 21 via a source socket 30, a source
network stack 24A and a source network interface 24B.
Before migration, the source socket 30 is owned by the
application 20 due to the application having established the
source socket and by maintaining a file descriptor thereto
that the application uses to pass data to and from the peer 21
using conventional socket read/write operations. After the
application 20 has been migrated to the target machine 26
and network connection failover has completed, the appli-
cation communicates with the peer 21 via a target socket 32,
a target network stack 26A and a target network interface
26B. Following migration, the application 20 owns the
target socket 32 by maintaining a file descriptor thereto that
the application use to pass data to and from the peer 21 using
conventional socket read/write operations.

FIG. 3 illustrates one embodiment of network connection
failover in which two connection managers respectively
running on the source and target machines 24 and 26 are
used to perform the failover operations. Other embodiments
using alternative connection failover processing are
described below in connection with FIGS. 7 and 9. In FIG.
3, a source connection manager 34 may be used to handle an
initial portion of the network connection failover. During
this operation, the source socket 30 is disassociated from the
application 20 prior to migration. A target connection man-
ager 36 may be used to handle the final portion of the
network connection failover in which the target socket 32 is
updated with the connection state information 38 from the
source socket 30 and activated following migration. Impor-
tantly, neither of the connection managers 34 or 36 needs to
be a full-fledge copy of the application 20. Rather, the
connection managers 34 and 36 may each be implemented
in software such as operating system code (e.g., one or more
kernel modules) respectively executing on the source and
target machines 24 and 26, or as combined user space/kernel
code. The connection managers 34 and 36 could also be
implemented using firmware or hardware logic.

As described in more detail in connection with FIG. 4, the
connection managers 34 and 36 function to cache the state
of'the migrating application’s network connection during the

US 9,473,598 B2

7

period that the application remains quiescent due to the
migration. The source connection manager 34 also takes
over operation of the source network socket 30, allowing the
transport protocol layer of the source network stack 24A to
continue managing the network connection. The target con-
nection manager 36 is responsible for setting up the appli-
cation’s network connection on the target machine 26. Its
functions include receiving the network connection state
information 38 from the source connection manager 34,
updating the network stack 26A on the target machine 26,
and activating the target socket 32 following successful
migration.

FIG. 4 illustrates exemplary processing that may be
performed to implement network connection failover in the
embodiment of FIG. 3 (in which both the source and target
connection managers 34 and 36 are used). FIG. 5 illustrates
exemplary logic within the source connection manager 34
that is involved in a first portion of the network connection
failover operations of FIG. 4. FIG. 5§ also illustrates the
source socket 30, the source network stack 24A and the
source interface 24B. The source network stack 24A
includes a conventional transport layer 24C and conven-
tional lower level protocol layers 24D. The transport layer
24C maintains TCP state information 24C-1, as well as a
receive buffer 24C-2 for incoming packets and transmitted
but unacknowledged data 24C-3 for outgoing packets, all of
which is conventional.

In block 40 of FIG. 4, application checkpointing and
migration is initiated by the migration management logic 28.
As is known in the art, this conventional operation may be
initiated by having the migration management logic 28 start
trapping calls from the application 20, then saving the
application’s in-memory state (e.g., to permanent storage) so
that the saved application state information can be later
redeployed on the target machine 26. In block 42, the
migration management logic 28 requests the source connec-
tion manager 34 to assume control of the source socket 30
and maintain it. The source connection manager 34 may
implement a suitable API (Application Programming Inter-
face) that the migration management logic 28 may use to
initiate the socket control transfer.

The socket control transfer will allow the source connec-
tion manager 34 to access all or a portion of the TCP state
information 24C-1 (FIG. 5), as will be required to later pass
the network connection state information 38 to the target
connection manager 36 following the application migration.
The TCP state information may include, but is not limited to,
the “4-tuple” source and destination addresses and port
numbers, various TCP flags such as the TCP window size,
the window scaling option (if any), Selective ACKnowl-
edgement (SACK) options data (if any), the Initial Send
Sequence number (ISS), the current sequence and acknowl-
edgement numbers, the current state of the receive buffer
24C-2, and transmitted but unacknowledged data 24C-3.
Note that the actual buffer contents are not required insofar
as the source connection manager 34 is only required to keep
the connection alive and maintained, not to process the
application’s network data.

During application checkpointing and migration, the
source socket 30 is no longer be readable by the application
20 and the socket’s buffering may be reduced by the source
connection manager 34 to the actual window size. The local
1P address will be visible to the root context of the appli-
cation environment 22, but no other application can use or
access it. One exemplary mechanism for transferring control
of'the source socket 30 to the source connection manager 34
will now be described. When the application 20 is check-

30

35

40

45

50

8

pointed, the virtual application environment 22 will be
stopped (frozen) by the migration management logic 28
using a conventional technique, such as the checkpointing
operation performed by operating system-level virtualiza-
tion systems described above, including IBM® Meiosys
virtualization products. Instead of deleting the socket
descriptor used by the application 20 to access the source
socket 30 (which would ordinarily result in destruction of
the socket’s kernel data structures), the source connection
manager 34 is informed by the migration management logic
28 of the source socket 30. In particular, as part of block 42
of FIG. 4, the migration management logic 28 provides the
source connection manager 34 with the source socket’s
“S-tuple” information consisting of the source and destina-
tion address and port numbers, and the protocol. This
information is used by socket descriptor/TCP state receive
logic 34A (FIG. 5) of the source connection manager 34 to
access the source socket 30 and open a duplicate file
descriptor to the socket. This socket access operation, which
is part of block 44 of FIG. 4, may be handled in a variety of
ways. For example, the logic 34A may include a user space
component that makes a system call to a kernel module
component of the logic 34A (or other operating system code)
that provides a special system call handler. The system call
parameters pass some or all of the 5-tuple information for
the source socket 30. The system call handler uses this
parameter information to determine the identity of the
source socket 32 and set a flag that enables the creation of
a duplicate file descriptor so that a new “application” (the
source connection manager 34) may access the socket. This
will allow the source socket 30 to be kept open and main-
tained by the source connection manager 34 while its logic
34A keeps track of the source socket state (e.g., whether it
is active or quiesced) using conventionally available query
mechanisms.

The flag that allows the source connection manager 34 to
access the source socket 30 could be a special purpose flag
that allows one socket to be opened by several applications.
This flag could thus be modeled on the conventional
SO_REUSEPORT flag that allows multiple applications to
bind to the same port. In such a case, the source connection
manager 34 may open the source socket 30 with the special
flag specified and will obtain a duplicate socket file descrip-
tor. One issue relative to using such a flag is that it might
allow other applications or another instance of the same
application to also open the source socket 30. Therefore, a
socket flag with similar features but higher security could be
created as an alternative. By way of example, the flag may
signify that only a root user in the global context of the
virtual application environment 22, or a user with special
security privileges, can open a socket marked with this flag.
Another option would be to create a special system call that
takes the socket’s 5-tuple information and returns a dupli-
cate socket linked to the existing socket infrastructure.

If desired, the source connection manager 34 may also be
provided (in block 42 of FIG. 4) with an identifier (container
ID) that identifies the virtual application environment 22. At
the time the source connection manager 34 is requested to
accept the source socket 30, the migration management
logic 28 may calculate a hash based on a timestamp, the
source socket 5-tuple, and the container ID (or other suitable
elements). This hash may be saved by the migration man-
agement logic (in the checkpoint image) and also provided
to the source connection manager 34. As described in more
detail below, the hash may be used to authenticate a subse-
quent request for connection state migration from the source
connection manager 34 to the target connection manager 36.

US 9,473,598 B2

9

Returning now to FIG. 4, as a further part of block 44, the
source connection manager 34 assumes responsibility for the
connection associated with the source socket 30 (i.e., the
connection between the source socket 30 and the peer 21),
but is not itself required to perform any network processing.
Instead, the source connection manager 34 allows the trans-
port layer 24C of the source network stack 24 A to sustain the
network connection by performing its normal TCP func-
tions. These functions include accepting all data that is
received from the remote network peer 21 and, using the
TCP state, responding with an acknowledgement (ACK)
while reducing the TCP window size in accordance with the
data accepted (into the TCP receive buffer). Thus, the peer
21 is not forced to retransmit and retry, or in a worse case
drop the connection. If the TCP window fills up, the peer 21
can be given a zero-sized window, thereby sending it into a
persist state. This state does not timeout and the peer will
periodically send persist probes that can be responded to by
ACK responses generated by the transport layer 24C. If the
peer 21 sends a keepalive probe, an ACK response can be
sent to keep the connection alive. If the connection is closed
by the peer, the connection can be maintained in the TCP
CLOSE_WAIT state until the application is restarted and an
ACK response is sent to close the connection. As indicated
above, the foregoing processing is performed automatically
by the transport layer 24C of the source network stack 24A.
The source connection manager 34 does not need to be
involved in this processing or any other aspect of sustaining
the application’s network connection to the peer 21 other
than ensuring that the source socket 30 is maintained.

The virtual application environment 22 will normally be
kept in a suspended state until there is successtul migration
of the application 20 and its network connection state
information 38 to target machine 26. However, the source
network stack 24A is not quiesced and continues to accept
packets at the local IP address of the source socket 30. If for
some reason the virtual application environment 22 is ter-
minated before the successful migration is complete, then
the source network stack 24 A must be kept alive. This may
be accomplished by ensuring that the network interface 24B
to which the source socket’s local IP address is associated is
not deactivated (e.g., by disabling its driver). The interface
24B may be a virtual interface used by the virtual application
environment 22 or a real interface to which the socket’s local
1P address is associated in the virtual application environ-
ment’s global context.

The migration of the application 22 from the source
machine 24 to the target machine 26 is handled by the
migration management logic 28 in conventional fashion.
Once the migration of the virtual application environment 22
to the target machine 26 has been completed, the application
20 is ready to be restarted and the TCP connection is ready
to be migrated from the source connection manager 34 to the
target connection manager 36. FIG. 6 illustrates exemplary
logic within the target connection manager 36 that is
involved in this second portion of the network connection
failover operations of FIG. 4. FIG. 6 also illustrates the
target socket 32 and the transport layer 26C of the target
network stack 26 A. The transport layer 26C maintains TCP
state information 26C-1, as well as a receive buffer 26C-2
for incoming packets and transmitted but unacknowledged
data 26C-3 for outgoing packets, all of which is conven-
tional. The lower layers of the source network protocol stack
are shown by reference numeral 26D, and are also conven-
tional.

In block 46 of FIG. 4, the migration management logic 28
restarts the application 20 on the target machine 26 with the

10

15

20

25

30

35

40

45

50

55

60

65

10

target socket 32 in a blocked state. Note that bringing up an
application’s socket(s) in a blocked state is normally part of
conventional application migration, and means that the
socket data structures and socket descriptor(s) are recreated
from the application’s checkpoint information, and each
socket is recreated with the 5-tuple consisting of the local
and peer IP addresses, the local and peer port numbers, and
the protocol. Transfer of the network address and port
information from the source machine 24 to the target
machine 26 can be handled in conventional fashion by the
migration management logic 28. At this point, however, the
local IP address of the blocked target socket 32 is not yet
associated with the network interface 26B on the target
machine 26. Therefore, no packets are received at the
blocked target socket 32. Note that the local IP address/port
number of the blocked target socket 32 will be the original
local IP address/port number associated with the source
socket 30 on the source machine 24. The local IP address/
port number information is assigned to the blocked target
socket 32 as part of the application migration process.

In block 48 of FIG. 4, the migration management logic 28
requests the target connection manager 36 (via an appropri-
ate API built in to the connection manager) to migrate the
connection state information 38 from the source connection
manager 34. The migration management logic 28 may
provide the target connection manager with the hash value
that was recorded at the time of checkpointing the applica-
tion 20. Alternatively, the migration management logic 28
could request the source connection manager 34 to push the
connection state information 38 to the target connection
manager 36. In block 50 of FIG. 4, connection state migra-
tion logic 36A (FIG. 6) in the target connection manager 36
issues a network request to the source connection manager
34 to initiate the migration of connection state information
38 for the source socket 30. The destination IP address used
for the migration request is an address in the global context
of the virtual application environment 22 on the source
machine 24. Connection state migration logic 34B (FIG. 5)
in source connection manager 34 maintains a network
service listening port for receiving the migration request.
The target connection manager 36 may identify this service
port using any of various known mechanisms. Alternatively,
the listening port could be assigned to a well-known port
number. In block 52 of FIG. 4, the source connection
manager 34, after authenticating the hash, sends its current
connection state information 38 (this includes but is not
limited to the TCP state, window size, etc.) to the target
connection manager 36. Once the target connection manager
36 has acquired the connection state information 38, its
target socket setup logic 38B (FIG. 6) updates the network
connection state of the blocked target socket 32, as shown in
block 54 of FIG. 4. This entails the target connection
manager 36 updating the relevant socket data structures of
the target network protocol stack 26A with the connection
state information 38 to conform the network connection
state of the blocked target socket 32 to the current state of
the source socket 30.

The target connection manager 36 may also use a system
call (e.g., the same as that used by the source connection
manager 34) for setting a flag on the target socket 32 that
allows the target socket to be accessed via a duplicate file
descriptor. The target connection manager 36 may then use
the duplicate file descriptor to access the target socket 32
using an input/output control command (e.g., a Linux® ioctl
command) to update the socket state. If desired, special
capability or credential checking may be put in place to
ensure that no other application is able to update the target

US 9,473,598 B2

11

socket state. Another condition that may be enforced is that
the target socket state can be updated only as long as is not
associated with an active IP address (the IP address is not yet
bound to a local interface).

In block 56 of FIG. 4, the migration logic 28 removes the
local IP address from the source machine 24 (e.g., upon
request from the target connection manager 34). In block 58
of FIG. 4, the source and target connection managers 34 and
36 reiterate on the connection state migration of block 52 to
ensure nothing was missed or changed during the short time
between the initial connection state migration and the source
1P address being removed. This operation may not be needed
if the source socket 30 was in a “persist” state or one of the
protocol close states in which no additional data can transfer
or no state changes can occur with respect to the source
socket. Under these conditions, there will be no new state
information that needs to be transferred to the target migra-
tion manager 36.

The migration management logic 28 then adds the local IP
address of the target socket 32 to the target network interface
26B in block 60 of FIG. 4. It may also optionally send out
a gratuitous ARP (Address Resolution Protocol) request to
update the ARP cache of the remote peer 21 (and other
network peers) with the MAC (Media Access Control)
address of the target network interface 26B. In some net-
works, gratuitous ARP requests are ignored. In such a
network, the virtual application environment 22 may be
created on the target machine 26 with a locally administered
MAC address being associated therewith. This MAC
address may be created using an agreed upon rule, and in this
way may be associated with the new network endpoint. At
this point, the target connection manager 36 may close its
handle to the target socket 32. However, the target socket 32
is kept open by the migrated application 20, which has its
own socket file descriptor.

At this stage, the blocked target socket 32 has the correct
network connection state and is associated with the proper
IP address in order to receive and send data. The migration
management logic 28 is informed of this status and it enables
the application 22. The target connection manager 36 then
removes the block on the target socket 32 in block 62 of FI1G.
4. Unblocking the socket on the target machine 26 entails the
target connection manager 36 inserting the local IP address
and port number for the target socket 32 into kernel routing
and TCP lookup tables. Once this happens, new packets
received or sent will be correctly processed. Note that if the
migration operation fails, the application 20 may be
restarted on the source machine 24. Its IP address will then
be reenabled and source socket 30 can be reattached. The
source connection manager 34 may be quiesced once it is no
longer required by the migration operation.

It should be noted that the ordering of the foregoing
processing could be changed so that the connection to the
peer 21 is migrated immediately after the application 20 is
checkpointed and before it is restarted on the target machine
26. Instead of waiting for the checkpointed application to be
restarted at on the target machine 26, as per block 46 of F1G.
4, the IP address and connection transfer of blocks 48-52
could be initiated as soon as the application 20 is blocked
during the checkpoint operation. In lieu of block 46 of FIG.
4 being implemented prior to the connection migration, the
target connection manager 36 would create the target socket
32, migrate the connection per blocks 48-52 of FIG. 4, and
then update the socket’s kernel structures per block 54 of
FIG. 4. The IP address and port number of the source socket
would then be removed from the source machine 24 and
associated with the target machine 26 per blocks 58 and 60

25

30

35

40

45

12

of FIG. 4. As per block 62 of FIG. 4, the target connection
manager 36 would also update the TCP lookup and routing
tables so that the target socket 32 becomes operational. The
TCP state of the target socket 32 would thus be valid when
the application 20 is restarted on the target machine 26. The
application restart logic implemented by the migration man-
agement logic 28 would find that the target socket 32 already
exists. Optionally, it may verify that the connection is the
same connection that existed on the source machine 24 using
the ‘hash’ stored by the migration management logic 28 in
the checkpoint image. The target connection manager 36
may then close its handle to the target socket 32.

FIG. 7 is illustrative of another exemplary implementa-
tion of network connection failover. FIG. 7 depicts essen-
tially the same hardware and software components as FIG.
3. The only difference is that the source machine 24 no
longer includes a source connection manager. Instead, the
target machine 26 has a modified target connection manager
36' that functions as both a source connection manager and
a target connection manager. Instead of transferring the
source socket 30 on the source machine 24 to a source
connection manager, and thereafter transferring connection
state information to a target connection manager, the source
socket 30 is transferred to the target connection manager 36'.
This may be handled in the same manner as the source
connection manager 34 in the discussion above, except that
the system call that allows the source socket 30 to be opened
with duplicate file descriptors will be a remote procedure
call from the target machine 26. Then there is no need for a
subsequent transfer of connection state information because
the target connection manager 36' already has up-to-date
information. Exemplary processing is illustrated in FIG. 8.
In block 70 of FIG. 8, application checkpointing is initiated
by the migration management logic 28 as per block 40 of
FIG. 4. In block 72 of FIG. 8, the migration management
logic 28 passes the source socket’s S-tuple information to
the target connection manager 36' and requests that it
assume control of the source socket 30. This operation is the
similar to the one performed in block 42 of FIG. 4, except
that the recipient connection manager is on the target
machine 26 rather than the source machine 24. Moreover,
the local IP address of the source socket may now be
removed from the source machine, as per block 56 of FIG.
4. In block 74 of FIG. 8, the target connection manager 36'
takes over the source socket 30 and assumes responsibility
for the migrating application’s network connection in the
same manner as described per block 44 of FIG. 4. In block
76 of FIG. 8, the application 20 is restarted on the target
machine 26 following migration, as per block 46 of FIG. 4.
In FIG. 8, there are no counterparts to blocks 48, 50 and 52
of FIG. 4. Instead, in block 78 of FIG. 8, the target
connection manager 36' sets up the connection state for the
migrated application 20 on the target machine by updating
the target socket 32 with the current connection state infor-
mation of the source socket 30, as per block 54 of FIG. 4.
Block 80 of FIG. 8 is then performed in which the migration
management logic 28' adds the IP address for the source
socket 30 to the target machine 26, as per block 60 of FIG.
4. In block 82 of FIG. 8, the target connection manager 36'
removes the block on the target socket 32, as per block 62
of FIG. 4.

FIG. 9 is illustrative of another exemplary implementa-
tion of network connection failover. FIG. 9 depicts essen-
tially the same hardware and software components as FIG.
3. The only difference is that the source connection manager
34 has been moved from the source machine 24 to an
intermediary machine 84. Other than having to accommo-

US 9,473,598 B2

13

date the new location of the source connection manager 34,
network connection failover processing is the same as in
FIG. 4. The TCP connection state and IP address are thus
transferred to intermediary machine 84, which then takes
over as the source connection manager 34 during network
connection failover.

Turning now to FIG. 10, an alternative data processing
system 90 is shown to illustrate that the network connection
failover technique disclosed herein is not limited to operat-
ing system-level virtualization of the type shown in FIG. 1.
Rather, the concepts disclosed herein are applicable to any
virtual environment. The data processing system 90 repre-
sents one such alternative environment wherein a hardware
platform 92 runs a virtual machine monitor (VMM) 94, also
known as a hypervisor. The VMM 94 supports multiple
operating system instances, such as operating systems 96,,
and 96,, each of which operates in a virtual machine
environment 98,, and 98, created by the VMM. These
virtual machines represent an alternative form of virtual
application environment that respectively supports applica-
tions 100, and 100,, but also includes the operating systems
96,, and 96,. Application migration in the environment of
FIG. 10 involves moving an entire virtual machine including
its operating system.

As is well known, a VMM is a conventional low level
software service that virtualizes the underlying hardware to
provide a subset of the CPU, memory and I/O resources (i.e.,
avirtual machine) on behalf of higher level operating system
“guests.” The VMM 94 may be implemented according to
any of the VMM design concepts that have been in use since
hypervisors were first developed in the late 1960s (taking
into account the VM support capabilities of the underlying
hardware). Existing examples of commercial hypervisors
include the CP Control Program used in the IBM VM/370®
mainframe product introduced by International Business
Machines Corporation in 1972, the current zZVM™ hyper-
visor used in the IBM zSeries® mainframe product, and the
hypervisor used in the IBM pSeries® and iSeries™ Pow-
erPC products. A Linux® kernel compiled to support the
Xen Domain-0 virtual machine monitor and one or more
Xen Domain-1, Domain-2, . . . Domain-n virtual machines
is another example. Other open source virtualization solu-
tions supported by recent Linux® kernels, such as Qemu and
KVM (Kernel-based Virtual Machine), could potentially
also be used. Note that the reference to the foregoing
technologies is not intended to suggest that the invention is
limited to particular product offerings.

The processing used to implement network connection
failover in the data processing system 90 is analogous to the
failover technique used for the data processing system 2 of
FIG. 1. However, the global context of the virtual applica-
tion environments 98, and 98, is the VMM 94. As such, the
connection managers could be implemented in whole or in
part within the VMMs of source and target machines or
within virtual machines supported by such VMMs (see
below). Conventional techniques are available to migrate
VMM from one machine to another, including those imple-
mented by the VMM products described above. Virtual
Machines can be quiesced and saved as files that are easily
transferred from one machine to another. The migration
management logic 100 that implements this operation in the
VMM environment of FIG. 10 would be analogous to the
migration management logic 28 described above.

For example, when migrating a virtual application envi-
ronment that includes an operating system, the migration
management logic may suspend the source virtual applica-
tion environment, then copy its memory image (e.g. as a file)

10

15

20

25

30

35

40

45

50

55

60

65

14

and restart it on the target machine. An alternative technique
is to first copy the virtual application environment image to
the target machine and then copy over the memory pages
that have been dirtied since the initial transfer. This process
may continue with the source virtual application environ-
ment continuing to execute until there is a small set of dirty
pages (or none). At that point, the target virtual application
environment is synchronized with the source virtual appli-
cation environment. The source virtual application environ-
ment is then be suspended and the target virtual application
environment is be started. At the end of this process, the IP
address of the source virtual application environment is
transferred to the target machine, linked to the target virtual
application environment, and the migration is complete.

In the first scheme, which may be referred to as “suspend
and migrate,” the source virtual application environment’s
network connection might be lost when that environment is
suspended and before the target virtual application environ-
ment is started. In the second scheme, which may be referred
to as “live migration,” the network connection could be lost
during the migration process and prior to startup of the target
virtual application environment. Even if the connection is
not lost, the synchronization of the source and target
machines and/or the target virtual application start could
take a long time. This situation could arise if there is a
significant amount of network traffic and related activity,
such that the source virtual application environment does not
converge to a small set of dirty pages as a result.

In both the foregoing cases, the connection transfer tech-
nique described herein may be used to transfer the network
connection. For the “suspend and migrate” case, the tech-
nique disclosed herein will prevent the peer from dropping
the connection following suspension on the source machine
and prior to restart on the target machine. For the live
migration case, the disclosed technique will allow the source
machine version of the virtual application environment to
rapidly quiesce its network state because responsibility for
its network connection(s) will be taken over by a connection
manager. The source and target versions of the virtual
application environment may thus be quickly synchronized,
thereby speeding up the migration operation.

In the context of the data processing system 90 of FIG. 10,
the source and target connection managers could be essen-
tially the same as any of the source and target connection
managers described above, except that the operations of the
source connection manager would be distributed between
the source virtual application environment being migrated
(e.g., 98,) and either the VMM 94 or a separate virtual
application environment (e.g., 98,) that could perhaps be
dedicated to network connection migration support for other
virtual application environments.

FIGS. 11 and 12 illustrate one exemplary embodiment
that may be used to implement connection failover in a
VMM environment such as FIG. 10. In FIG. 11, the com-
ponents 124-138 are analogous to the components 24-38 of
FIG. 3, as indicated by the use of corresponding reference
numerals incremented by 100. The main difference is that
the virtual application environment 122 is based on one of
the virtual application environments 98, or 98, of FIG. 10,
and thus represents a virtual machine containing an inte-
grated operating system. Another difference is that the
source connection manager 134 is distributed between a first
part (Part 1) 134A situated in the virtual application envi-
ronment 122 on the source machine 124 and a second part
(Part 1I) 134B situated outside the virtual application envi-
ronment 122. As indicated above, the connection manager
part 134B could reside in the administrative domain of a

US 9,473,598 B2

15

virtual machine manager (VMM) that hosts the virtual
application environment 122 (such as VMM 94 of FIG. 10).
The connection manager part 134B could also reside in a
separate virtual application environment, such as one dedi-
cated to connection management. A further difference is that
there are two versions of the source socket 130, an original
version 130A in the virtual application environment 122 on
the source machine and a copy 130B associated with the
connection manager part 134B. The final difference between
FIG. 11 and FIG. 3 is that the target connection manager 136
resides in the virtual application environment 122 on the
target machine 126. According to the “suspend and migrate”
technique discussed above, an instance of the virtual appli-
cation environment 122 would not be created on the target
machine 126 until the instance on the source machine 124
has been suspended. According to the “live-migration”
technique discussed above, instances of the virtual applica-
tion environment 122 would run simultaneously on the
source and target machines 124 and 126.

FIG. 12 illustrates exemplary processing that may be
performed to transfer the network connection of the virtual
application environment from the source machine 124 to the
target machine 126. In block 140, the migration manage-
ment logic 128 initiates checkpointing of the virtual appli-
cation environment 122. In block 142, the migration man-
agement logic requests the source connection manager part
134A (or part 134B) to initiate transter of the source socket
142. In block 144A, the source connection manager part
134A collects the TCP state information (socket data) of the
original source socket 130A. To facilitate this operation, the
operating system of the virtual application environment 122
may be modified to implement an operating system call that
performs the socket data gathering operation. The source
connection manager part 134A may be implemented as a
user space application in the virtual application environment
that invokes the system call.

After the system call returns the socket state information,
the source connection manager part 134A transfers this
information to the source connection manager part 134B, as
per block 144B of FIG. 12. The information transfer may
utilize a conventional communication mechanism, such as a
virtual network communication pathway or other commu-
nication mechanism supported by the underlying VMM (e.g.
hypersockets on IBM System zSeries® systems). If no
special mechanism exists, a local network IP address may be
assigned to a network interface associated with the virtual
application environment 122 over which this domain can
communicate with VMM or virtual machine domain con-
taining the source connection manager part 134B. In block
144C, the source connection manager part 134B assumes
control of the original source socket 130A by making a copy
thereof 130B using the TCP state information provided by
the source connection manager part 134A. This operation
may be implemented by way of an input/output control
command (e.g., a Linux® ioctl command) to update the
socket state. The source manager part 134B would create the
source socket copy 130B and invoke the input/output com-
mand to populate the socket data structures with the socket
data for the original source socket 130A. The source con-
nection manager part 134B may be implemented as a user
space application that uses a conventional operating system
call to create the socket.

In block 144D, the source connection manger part 134A
requests the operating system of the virtual application
environment 122 to send an acknowledgement of received
but unacknowledged packets and suspend the original
source socket 130A. The suspension request to the operating

10

15

20

25

30

35

40

45

50

55

60

16

system of the virtual application environment 122 may be
implemented in block 144D as a system call that is invoked
by the source connection manager part 134A. This could be
part of the socket data gathering system call described
above, or a separate system call. In block 144E, the source
connection manager part 134B transfers the network con-
nection to the source socket copy 130B it has created and
activates the socket. Block 144E may be implemented by the
operating system of the source connection manager part
134B acquiring the IP address of the network connection and
then unblocking the source socket copy 130B. The source
connection manager part 134B thereby assumes control of
the original source socket 130A by way of its copy 130B,
and relies on operating system transport layer services to
maintain the network connection to the peer, as described
above.

The virtual application environment 122 may now be
suspended. Upon restart on the target machine 126 per block
146 of FIG. 12, the networking of the virtual application
environment 122 will be initially suspended. The target
connection manager 136 is invoked by the migration man-
agement logic 128 per block 148 and it contacts the source
connection manager part 134B to initiate connection migra-
tion per block 150. Blocks 152-162 are then performed as
per blocks 52-62 of FIG. 4, and the target connection
manager 136 may terminate.

Accordingly, a mechanism for handling network connec-
tion failover during application service interruption has been
disclosed. It will be appreciated that the foregoing concepts
may be variously embodied in any of a data processing
system, a machine implemented method, and a computer
program product in which programming logic is provided by
one or more machine-readable media for use in controlling
a data processing system to perform the required functions.
Relative to a data processing system and machine imple-
mented method, FIG. 13 illustrates an exemplary hardware
environment 210 in which the various data processing
systems and machines heretofore described may be imple-
mented. The hardware environment includes one or more of
a CPU or other data processing resource 212, a physical
memory 214, an optional graphics card 216 for generating
visual output to an optional monitor (not shown), a periph-
eral storage device 218, other peripheral devices 220, and a
bus infrastructure 222 interconnecting the foregoing ele-
ments. The various virtual application environments
described above, as well as the supporting global contexts,
migration managers, connection managers, and networking
logic, may be implemented as software loaded in the
memory 214 for execution on the data processing resource
212. They could also be implemented using hardware logic
or firmware in the environment 210. If a user interface is
provided, it may be accessed through user interaction with
the peripheral devices 220 (e.g., keyboard, mouse, etc.).

Relative to a computer program product having a
machine-readable media and programming logic for con-
trolling a data processing system, exemplary machine-read-
able media for providing such programming logic are shown
by reference numeral 300 in FIG. 14. The media 300 are
shown as being portable optical storage disks of the type that
are conventionally used for commercial software sales, such
as compact disk-read only memory (CD-ROM) disks, com-
pact disk-read/write (CD-R/W) disks, and digital versatile
disks (DVDs). Such media can store the programming logic
of the invention, either alone or in conjunction with another
software product that incorporates the required functionality.
Moreover, the network connection failover functionality
described herein could be distributed across several media

US 9,473,598 B2

17

300, each of which is intended to be used by a different data
processing system. The programming logic could also be
provided by portable magnetic media (such as floppy disks,
flash memory sticks, etc.), or magnetic media combined
with drive systems (e.g. disk drives), or media incorporated
in data processing platforms, such as random access
memory (RAM), read-only memory (ROM) or other semi-
conductor or solid state memory. More broadly, the media
could comprise any electronic, magnetic, optical, electro-
magnetic, infrared, semiconductor system or apparatus or
device, transmission or propagation signal or signal-carrying
medium (such as a network), or other entity that can contain,
store, communicate, propagate or transport the program-
ming logic for use by or in connection with a data processing
system, computer or other instruction execution system,
apparatus or device.

Although various embodiments of the invention have
been described, it should be apparent that many variations
and alternative embodiments could be implemented in
accordance with the invention. For example, the disclosed
network connection failover technique could potentially be
used during other types of applications service interruptions
that are not due to application migration. Suspending an
application for a system software or hardware upgrade (e.g.
replacing a network interface card) would be such a case.
The application would be checkpointed but thereafter rec-
reated on the same system. Another case would be where the
application is checkpointed due to a need to hotplug new
hardware, insert a kernel module or modify an application
library (provided this does not affect the application’s state).
In each case, the target socket could also be the source
socket, and thus simply transferred back to the application
upon restart. It will also be appreciated that the connection
managers described herein may handle multiple network
connections simultaneously, which is advantageous for
server virtual application environments.

It is understood, therefore, that the invention is not to be
in any way limited except in accordance with the spirit of the
appended claims and their equivalents.

What is claimed is:

1. A method for implementing network connection
failover during application service interruption, comprising:

quiescing a running application while maintaining a first

network socket owned by said application, said first
network socket representing an endpoint of a network
connection to a network peer on behalf of said appli-
cation;

sustaining said network connection whose endpoint is

represented by said first network socket in order to keep
said network connection alive at said first network
socket until a second network socket takes over from
said first network socket, said network connection
being sustained by controlling said first network socket
so that its associated network protocol stack provides
acknowledgements of incoming network traffic to said
network peer that prevent said network peer from
terminating said network connection;

restarting said application with a blocked second network

socket owned by said application;

conforming a state of said blocked second network socket

to a current network connection state associated with
said first network socket; and

unblocking said blocked second network socket and

allowing said second network socket to take over from
said first network socket as said endpoint of said
network connection to said network peer on behalf of
said application, said take over including discontinuing

10

15

20

25

30

35

40

45

50

55

60

65

18

said maintaining of said first network socket as said
network connection endpoint.

2. A method in accordance with claim 1 wherein said
application is disposed in a virtual application environment
and said application is quiesced as part of an application
migration operation wherein said virtual application envi-
ronment is migrated from a source machine to a target
machine.

3. Amethod in accordance with claim 2 wherein said first
network socket is maintained by a connection manager that
resides on said target machine.

4. A method in accordance with claim 2 wherein said first
network socket is maintained by a source connection man-
ager residing on said source machine or an intermediary
machine, and wherein said method further includes estab-
lishing a target network connection manager on said target
machine and using said target connection manager to con-
form said state of said blocked second network socket to said
current network connection state of said first network socket
maintained by said source connection manager.

5. A method in accordance with claim 4 wherein said
virtual application environment includes an operating sys-
tem, and wherein said source connection manager is distrib-
uted between a first source connection manager part residing
in said virtual application environment on said source
machine and a second source connection manager part
residing outside said virtual application environment, and
further wherein said target connection manager resides in
said virtual application environment on said target machine.

6. A method in accordance with claim 1 wherein said
network connection is sustained by a transport layer of said
network protocol stack associated with said first network
socket.

7. A method in accordance with claim 1 wherein said
current network connection state comprises one or more of
4-tuple source and destination addresses, port numbers, TCP
flags, Selective ACKnowledgement (SACK) options data,
an Initial Send Sequence number (ISS), current sequence
and acknowledgement numbers, and a current state of a
receive buffer and transmitted but unacknowledged data.

8. A system for implementing network connection
failover during application service interruption, comprising:

a source machine;

a target machine;

an application to be migrated from said source machine to
said target machine;

a first network socket owned by said application when
running on said source machine, said first network
socket representing an endpoint of a network connec-
tion to a network peer on behalf of said application
when running on said source machine;

socket maintaining logic adapted to maintain said first
network socket after said application is quiesced for
migration from said source machine to said target
machine platform;

network connection sustaining logic adapted to sustain
said network connection whose endpoint is represented
by said first network socket in order to keep said
network connection alive at said first network socket
until a second network socket takes over from said first
network socket, said network connection being sus-
tained by controlling said first network socket so that its
associated network protocol stack provides acknowl-
edgements of incoming network traffic to said network
peer that prevent said network peer from terminating
said network connection;

US 9,473,598 B2

19

a second network socket owned by said application when
running on said target machine, said second network
socket representing an endpoint of said network con-
nection to said network peer on behalf of said appli-
cation when running on said target machine, said
second network socket having a blocked state and an
unblocked state;

connection state conforming logic adapted to conform a
network connection state of said second network socket
when in said blocked state to a current network con-
nection state of said first network socket; and

unblocking logic adapted to unblock said blocked second
network socket from said blocked state to said
unblocked state and allow said second network socket
to take over from said first network socket as said
endpoint of said network connection to said network
peer on behalf of said application, said take over
including discontinuing said maintaining of said first
network network socket as said network connection
endpoint.

9. A system in accordance with claim 8 wherein said
application is disposed in a virtual application environment
when running on said source and target machines and
wherein said system further includes migration management
logic adapted to quiesce said application on said source
machine as part of an application migration operation
wherein said virtual application environment is migrated
from said source machine to said target machine.

10. A system in accordance with claim 9 wherein said
socket maintaining logic comprises a target connection
manager residing on said target machine.

11. A system in accordance with claim 9 wherein said
socket maintaining logic comprises a source connection
manager residing on said source machine or an intermediary
machine, and wherein said system further includes a target
network connection manager on said target machine, said
target connection manager comprising said connection state
conforming logic.

12. A system in accordance with claim 11 wherein said
virtual application environment includes an operating sys-
tem, and wherein said source connection manager is distrib-
uted between a first source connection manager part residing
in said virtual application environment on said source
machine and a second source connection manager part
residing outside said virtual application environment, and
further wherein said target connection manager resides in
said virtual application environment on said target machine.

13. A system in accordance with claim 8 wherein said
network connection sustaining logic sustains said network
connection using a transport layer of said network protocol
stack associated with said first network socket.

14. A system in accordance with claim 8 wherein said
current network connection state information used by said
network state conforming logic comprises one or more of
4-tuple source and destination addresses, port numbers, TCP
flags, Selective ACKnowledgement (SACK) options data,
an Initial Send Sequence number (ISS), current sequence
and acknowledgement numbers, and a current state of a
receive buffer and transmitted but unacknowledged data.

15. A computer program product, comprising:

one or more non-transitory data storage media;

programming logic stored on said data storage media for
programming a hardware platform to implement net-
work connection failover during application service
interruption, said network connection failover compris-
ing:

10

15

20

25

30

35

40

45

50

55

60

65

20
quiescing a running application while maintaining a first
network socket owned by said application, said first
network socket representing an endpoint of a network
connection to a network peer on behalf of said appli-
cation;

sustaining said network connection whose endpoint is

represented by said first network socket in order to keep
said network connection alive at said source network
socket until a second network socket takes over from
said first network socket, said network connection
being sustained by controlling said first network socket
so that its associated network protocol stack provides
acknowledgements of incoming network traffic to said
network peer that prevent said network peer from
terminating said network connection;

restarting said application with a blocked second network

socket owned by said application;

conforming a state of said blocked second network socket

to a current network connection state associated with
said first network socket; and

unblocking said blocked second network socket and

allowing said second network socket to take over from
said first network socket as said endpoint of said
network connection to said network peer on behalf of
said application, said take over including discontinuing
said maintaining of said first network socket as said
network connection endpoint.

16. A computer program product in accordance with claim
15 wherein said application is disposed in a virtual appli-
cation environment and said application is quiesced as part
of an application migration operation wherein said virtual
application environment is migrated from a source machine
to a target machine.

17. A computer program product in accordance with claim
16 wherein said first network socket is maintained by a
connection manager that resides on said target machine.

18. A computer program product in accordance with claim
16 wherein said first network socket is maintained by a
source connection manager residing on said source machine
or an intermediary machine programmed by said computer
program product, and wherein said computer program prod-
uct further includes programming logic recorded on said
data storage media for establishing a target network con-
nection manager on said target machine to conform said
state of said blocked second network socket to said current
network connection state of said first network socket main-
tained by said source connection manager.

19. A computer program product in accordance with claim
18 wherein said virtual application environment includes an
operating system, and wherein said source connection man-
ager is distributed between a first source connection man-
ager part residing in said virtual application environment on
said source machine and a second source connection man-
ager part residing outside said virtual application environ-
ment, and further wherein said target connection manager
resides in said virtual application environment on said target
machine.

20. A computer program product in accordance with claim
15 wherein said network connection is sustained by a
transport layer of said network protocol stack associated
with said first network socket.

21. A computer program product in accordance with claim
15 wherein said current network connection state comprises
one or more of 4-tuple source and destination addresses, port
numbers, TCP flags, Selective ACKnowledgement (SACK)
options data, an Initial Send Sequence number (ISS), current

US 9,473,598 B2

21

sequence and acknowledgement numbers, and a current
state of a receive buffer and transmitted but unacknowledged
data.

22. A method for implementing network connection
failover during application service interruption, comprising:

quiescing a running application while maintaining a first

network socket that represents an endpoint of a network
connection to a network peer on behalf of said appli-
cation;

transferring control of said first network socket and net-

work connection state information associated with said
first network socket to a connection manager, such that
said first network socket becomes a connection man-
ager socket;

sustaining said network connection whose endpoint is

represented by said first network socket in order to keep
said network connection alive at said first network
socket until a second network socket takes over from
said first network socket, said network connection
being sustained by controlling said first network socket
so that its associated network protocol stack provides
acknowledgements of incoming network traffic to said
network peer that prevent said network peer from
terminating said connection;

restarting said application with a blocked second network

socket owned by said application;

conforming a state of said blocked second network socket

to a current network connection state maintained by
said connection manager; and

unblocking said blocked second network socket and

allowing said second network socket to take over from
said first network socket as said endpoint of said
network connection to said network peer on behalf of
said application, said take over including discontinuing
said maintaining of said first network socket as said
network connection endpoint.

23. A method in accordance with claim 22, wherein said
connection manager is distributed between a source machine
and a target machine used for migration of said application.

24. A computer program product, comprising:

one or more non-transitory data storage media;

20

30

35

22

programming logic stored on said data storage media for
programming a hardware platform to implement a
migration manager for migrating a running application
while implementing network connection failover dur-

5 ing said migration, said network connection failover

comprising:

quiescing a running application while maintaining a first
network socket that represents an endpoint of a network
connection to a network peer on behalf of said appli-
cation;

transferring control of said first network socket and net-

work connection state information associated with said
first network socket to a connection manager, such that
said first network socket becomes a connection man-
ager socket;

sustaining said network connection whose endpoint is

represented by said first network socket in order to keep
said network connection alive at said first network
socket until a second network socket takes over from
said first network socket, said network connection
being sustained by controlling said first network socket
so that its associated network protocol stack provides
acknowledgements of incoming network traffic to said
network peer that prevent said network peer from
terminating said connection;

restarting said application with a blocked second network

socket owned by said application;

conforming a state of said blocked second network socket

to a current network connection state maintained by
said connection manager; and

unblocking said blocked second network socket and

allowing said second network socket to take over from
said first network socket as said endpoint of said
network connection to said network peer on behalf of
said application, said take over including discontinuing
said maintaining of said first network socket as said
network connection endpoint.

25. A computer program product in accordance with claim
24, wherein said connection manager is distributed between
a source machine and a target machine used for migration of
U said application.

